所有初诊子宫内膜癌患者需进行精准的分子分型
子宫内膜癌是最常见的三大女性生殖系统恶性肿瘤之一,发病率居我国妇科恶性肿瘤第二位。发病率近几年呈持续上升和年轻化趋势。
子宫内膜癌在组织和分子水平上是一组异质性较强的肿瘤,不同特征的肿瘤预后不同[1]。传统的病理分型将子宫内膜癌分为I型(低级别子宫内膜样癌)和II型(高级别子宫内膜样癌及非子宫内膜样癌),约有20%的子宫内膜癌在病理分型中被归为高风险型,提示预后较差[2]。然而病理分型具有很大的局限性,随着基因组学的研究和个体化精准医疗的推广,子宫内膜癌的分子分型对于判断患者预后和指导辅助治疗方案具有重要意义。
所有子宫内膜癌患者需进行林奇综合征筛查
子宫内膜癌存在明确的遗传相关性。3~5%的子宫内膜癌由林奇综合征导致[9, 10],林奇综合征是一类外显率较高的常染色体显性遗传疾病,患者罹患子宫内膜癌的终身风险高达33~61%[9, 11, 12],且平均发病年龄较普通人群早10~20 岁[12, 13]。MSH2、MSH6、MLH1、PMS2和EPCAM为林奇综合征的主要致病基因[14]。林奇综合征患者继发结直肠癌、胃癌、卵巢癌、尿路上皮癌、肾癌和胆道肿瘤等恶性肿瘤的风险增高[12,15],且携带杂合突变的患者有50%的可能性将致病突变遗传给后代。此外,其他基因突变也可能与较高的子宫内膜癌风险相关[16],比如PTEN基因胚系突变相关的Cowden综合征也会导致子宫内膜癌[17]。
复发或转移子宫内膜癌的生物标志物检测
不同组织病理学亚型的子宫内膜癌患者有特定的形态学和分子特征,而分子特征决定了子宫内膜癌患者靶向治疗的用药逻辑和依据。 67%~91%的子宫内膜癌患者中存在至少一个可能提示美国FDA批准药物或临床试验阶段药物靶点的基因变异,她们在选择靶向治疗前需明确其携带的分子特征。 免疫治疗已获批用于复发或转移性子宫内膜癌患者的治疗,目前获批的药物主要是针对PD-1靶点的单克隆抗体,获批的伴随诊断分子标志物有dMMR、MSI-H和TMB-H。子宫内膜癌dMMR发生比例为17%~33%。
华妍安®-子宫内膜癌分子检测
通过检测患者的肿瘤组织和外周血样本,可一次性得到子宫内膜癌的分子分型、遗传风险评估、靶向和免疫治疗药物参考,快速、准确地评估患者的预后、辅助治疗参考方案、患者及家人的遗传风险,给患者和临床医生提供全方位的精准诊疗解决方案。
产品优势
参考文献
[1] Bokhman J V. Two pathogenetic types of endometrial carcinoma[J]. Gynecologic oncology, 1983, 15(1): 10-17.
[2] Felix A S, Weissfeld J L, Stone R A, et al. Factors associated with Type I and Type II endometrial cancer[J]. Cancer Causes & Control, 2010, 21(11): 1851-1856.
[3] 子宫内膜癌分子检测中国专家共识(2021年版)
[4] Jessica NM, Derek SC. Remi AN, et al. Evaluation of treatment effects in patients with endometrial cancer and POLE mutations: An individual patient data meta-analysis. Cancer, 2021 Jul 15;127(14):2409-2422
[5] Nicole Concin, Carien L Creutzberg, Ignace Vergote, et al. ESGO/ESTRO/ESP Guidelines for the management of patients with endometrial carcinoma, Virchows Arch. 2021 Feb;478(2):153-190. doi: 10.1007/s00428-020-03007-z
[6] Cancer Genome Atlas Research Network; Integrated genomic characterization of endometrial carcinoma, Nature. 2013 May 2;497(7447):67-73. doi: 10.1038/nature12113.
[7] Chung YS, Woo HY, et al, Mismatch repair status influences response to fertility-sparing treatment of endometrial cancer, Am J Obstet Gynecol. 2021 Apr;224(4):370.e1-370.e13
[8] Alicia L C, Stephanie M B, et al. Molecular Classification of the PORTEC-3 Trial for High-Risk Endometrial Cancer: Impact on Prognosis and Benefit From Adjuvant Therapy. Journal of Clinical Oncology, 2020, 38(29):3388-3397
[9] Ferguson S E, Aronson M, Pollett A, et al. Performance characteristics of screening strategies for Lynch syndrome in unselected women with newly diagnosed endometrial cancer who have undergone universal germline mutation testing[J]. Cancer, 2014, 120(24): 3932-3939.
[10] Ryan N A J, McMahon R, Tobi S, et al. The proportion of endometrial tumours associated with Lynch syndrome (PETALS): A prospective cross-sectional study[J]. PLoS medicine, 2020, 17(9): e1003263.
[11] Meyer L A, Broaddus R R, Lu K H. Endometrial cancer and Lynch syndrome: clinical and pathologic considerations[J]. Cancer Control, 2009, 16(1): 14-22.
[12] Barrow E, Hill J, Evans D G. Cancer risk in Lynch syndrome[J]. Familial cancer, 2013, 12(2): 229-240.
[13] Crispens M A. Endometrial and ovarian cancer in lynch syndrome[J]. Clinics in colon and rectal surgery, 2012, 25(2): 97.
[14] https://www.omim.org/phenotypicSeries/PS120435 Accessed on 2020/11/20
[15] Watson P, Lynch H T. Cancer risk in mismatch repair gene mutation carriers[J]. Familial cancer, 2001, 1(1): 57-60.
[16] Dörk T, Hillemanns P, Tempfer C, et al. Genetic susceptibility to endometrial cancer: Risk factors and clinical management[J]. Cancers, 2020, 12(9): 2407.
[17] Gammon A, Jasperson K, Champine M. Genetic basis of Cowden syndrome and its implications for clinical practice and risk management[J]. The application of clinical genetics, 2016, 9: 83.